Analyse de Données Sociales et Suivi de Clusters dans les Réseaux Sociaux

Erick Stattner

Laboratoire LAMIA - EA4540 Université des Antilles France erick.stattner@univ-antilles.fr

Pointe-à-Pitre, Décembre 2016

Introduction

Contexte:

- Explosion des études sur les réseaux
 - Études sur : réseaux d'amitiés, de collaboration, d'achats, de communications, d'échanges, ...
- Naît de l'observation que :
 liens sociaux = facteurs déterminants dans l'évolution de nombreux phénomènes
 - ▶ Problème de diffusion (rumeur, maladie, etc.)
 - ► Phénomène d'achat (lien social > attributs démographiques)
 - La prise de décision (lien social peut déterminer un comportement)
- La nouvelle science des réseaux [Barabasi,2002]
 Ensemble des méthodes qui s'intéressent aux interactions

Introduction

Principaux axes de recherche

Escalade de la collecte de données sociales

- Outils communautaire : Twitter, Facebook, Instagram, etc.
- Site de e-commerce : Amazon, Google, etc.
- Périphériques divers : déplacements, activités, etc.

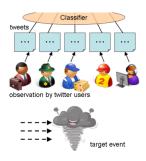
Sommaire

- Anlyser les données sociales
 - Identifier des événements
 - Prédire un évenement
 - Etudier les comportements
 - Aller plus loin
- Clustering de liens et suivi des clusters
- Résultats expérimentaux
- Conclusion et perspectives

Identifier des événements

Détecter les tremblements de terre au Japon [Sakaki et al., 2010]

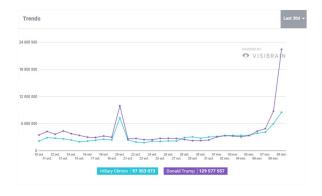
- Détection plus rapide que l'agence national
- Implémenté dans un système qui fournit des notifications



Prédire un évenement

Résultat d'élections [Tumasjan et al., 2010]

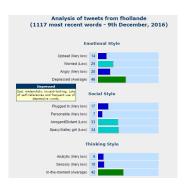
- Collecte messages sur les politiciens et les partis en Allemagne
- Corrélation entre le volume et le résultat



Etudier les comportements

Dresser un profil psycho-sociologique [Qiu et al., 2012]

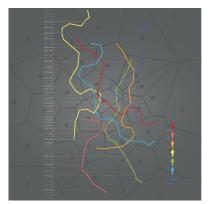
- Extraire des Tweets des indicateurs de personnalités
- 3 styles : émotionnel, social, réflexion



Etudier les comportements

Identifier quelqu'un grâce à ses déplacements [Blondel et al., 2014]

- 4 points suffisent pour identifier 95% des individus
- "Nos données de déplacements sont encore plus personnelles que nos empreintes digitales."



Anlyser les données sociales Aller plus loin

Accueil / News / Monde / Twitter utilisé pour prédire crimes et délits

Twitter utilisé pour prédire crimes et délits

Par Direct Matin Mis à jour le 29 Septembre 2016 à 08:59 Publié le 29 Septembre 2016 à 08:16

D'ici trois ans, la police de Los Angeles pourrait être la première à tester cette nouvelle méthode. [Andrew Burton / GETTY IMAGES NORTH AMERICA / AEPI

Prédire à l'avance les crimes et délits en scannant des données récoltées sur Twitter. Aux Etats-Unis, les autorités viennent de se lancer dans un vaste chantier de surveillance numérique pour prévenir des faits de délinquance.

DERNIÈRE MINUTE

22:58 Le footballeur Antoine Conté mis en examen après une violente agression 22:43 Koh-Lanta : tout savoir sur l'épreuve

22:39 Syrie : Daesh est de retour aux portes de Palmyre

22:22 Australie : sa maison est entièrement détruite par erreur

22:07 Attentat déloué en France : un sixième suspect présenté à la justice

21:42 ... Football Leaks... : Pooba recourt au paradis fiscal des îles anglo-normandes

21:14 Hollande vante des résultats impressionnants, contre Daesh

Direct Matin Le club

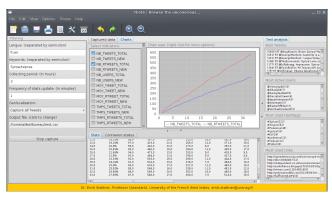
DES PLACES VIP.

DES RENCONTRES AVEC LES ARTISTES, DES AVANT PREMIÈRES ET D'AUTRES CADEAUX INÉDITS

Etudier les comportements

Etudier diffusion [Stattner et al., 2015]

- Collecte des messages sur des sujets ciblés
- Extraire de la connaissance
- http://erickstattner.com/thots-analytics/



Sommaire

- Anlyser les données sociales
- 2 Clustering de liens et suivi des clusters
 - Clustering traditionnel dans les réseaux
 - Liens conceptuels
 - Suivi des liens conceptuels
- Résultats expérimentaux
- Conclusion et perspectives

Clustering traditionnel dans les réseaux

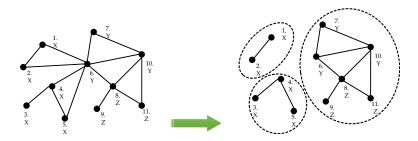
Extraction de clusters dans les réseaux

- Une des taches les plus courantes
- Identifier des groupes de noeuds qui partagent des propriétés communes
- 2 grandes approches
 - Approche traditionnelle
 - Approche hybride

Clustering traditionnel dans les réseaux

Approche traditionnelle

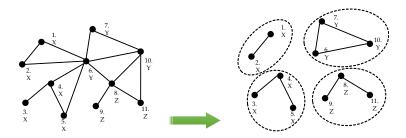
- Extraction de communautés : groupes de noeuds fortement connectés
 - Algorithmes agrégatifs [Newman2003]
 - ► Algorithmes séparatifs [Fortunato2009]
 - Algorithmes basés sur des fonctions d'optimisation [Blondel2008]



Clustering traditionnel dans les réseaux

Approche hybride

- Exploite structure et attributs
- Extraction de communautés dans lesquelles les noeuds partagent des propriétés communes
 - ▶ Idem + prend en compte une similarité interne [Zhou2009]



Clustering traditionnel dans les réseaux

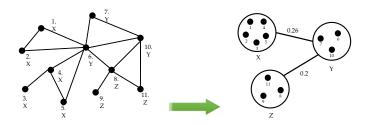
Limites:

- Les motifs extraits ne permettent pas de répondre à des questions telles que :
 - Quels sont les groupes de noeuds les plus connectés ?
 - Quelles sont les caractéristiques les plus fréquemment retrouvées en connexion?

Liens conceptuels

Approche "liens conceptuels"

- Exploite structure et attributs
- Recherche des régularités dans les liens parmi des groupes de noeuds
- Extraire des clusters de liens
 Groupe de noeuds (vérifiant certaines propriétés) fréquemment connecté à un autre groupe de noeuds



Liens conceptuels

Définition:

- G = (V, E): Un réseau social
- *V* défini comme une relation $R(A_1,..,A_p)$ où A_i est un attribut
- Chaque noeud $v \in V$ est défini par un **itemset** $(A_1 = a_1 \text{ et } ... \text{ et } A_D = a_D)$ ou $(a_1, ..., a_D)$
- Soit m itemset
 On note V_m l'ensemble des noeuds vérifiant la propriété m

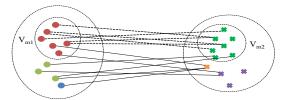
Liens conceptuels

Définition:

Soient m₁ et m₂ deux itemsets

$$(m_1, m_2)$$
: Lien conceptuel (cluster de liens)

$$(m_1, m_2) = \{e \in E; e = (a, b) a \in V_{m_1} \text{ et } b \in V_{m_2}\}$$



Lien entre deux concepts

Soit (m1, m2) un lien conceptuel

 V_{m_1} : extension, i.e. l'ensemble des objets impliqués

m₁: intension, i.e. l'ensemble des attributs partagés

Liens conceptuels

Définition :

• (m_1, m_2) : lien conceptuel
Support de (m_1, m_2) : Pourcentage de liens de type (m_1, m_2) $support[(m_1, m_2)] = \frac{|\{e \in E; e = (a, b) \mid a \in V_{m_1} \text{ et } b \in V_{m_2}\}|}{|E|}$

• β : seuil de support des liens (m_1, m_2) est un lien conceptuel fréquent (FCL) ssi $support[(m_1, m_2)] > \beta$

Liens conceptuels

Définition:

• (m'_1, m'_2) est un sur-lien conceptuel de (m_1, m_2) ssi

$$\textit{m}_1 \subseteq \textit{m}_1' \quad \text{et} \quad \textit{m}_2 \subseteq \textit{m}_2'$$

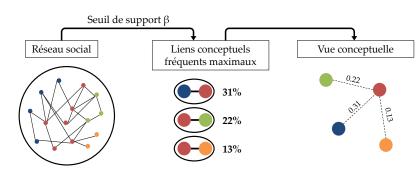
Ex. (ab, b) sur-lien conceptuel de (a, b)

- (m_1, m_2) est un sous-lien conceptuel de (m'_1, m'_2)
- (m_1, m_2) Lien conceptuel fréquent maximal (MFCL) ssi # pas de sur-lien conceptuel (m'_1, m'_2) de (m_1, m_2) qui soit fréquent

Liens conceptuels

Vue conceptuelle:

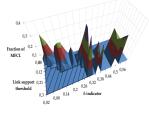
- Connaissance sur les groupes de noeuds les plus connectés
- Fournissent une "vue conceptuelle"



Liens conceptuels

Nos travaux récents

Optimisation de l'algorithme [IJISMD'2013, RCIS'2013]



Intersection avec clusters traditionnels [ASONAM'2013, SNAM'2014]

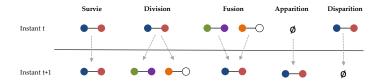
Questions ouvertes

- Clusters extraits sur des réseaux statiques
- La plupart des réseaux évoluent
- Aucune information sur le devenir des clusters

Suivi des liens conceptuels

Évolution des liens conceptuels

- Comment les liens conceptuels évoluent sur les réseaux dynamiques?
- Objectif: caractériser l'évolution des clusters entre l'état G_t et G_{t+1} du réseau
- 5 comportements identifiés



Suivi des liens conceptuels

Évolution des liens conceptuels

On introduit la similarité entre deux liens conceptuels L et L'

$$sim(L, L') = min\left(\frac{|L \cap L'|}{|L|}, \frac{|L \cap L'|}{|L'|}\right)$$
 (1)

- Soit L un cluster extrait dans G_t , on note match(L) l'ensemble des clusters de liens L' dans G_{t+1} dont la similarité avec L dépasse un seuil
 - ▶ **Fusion** : L dans G_t fusionne avec d'autres clusters pour devenir L' dans G_{t+1} si $L' \in match(L)$ et $\exists Z \neq L$ dans G_t tel que $L' \in match(Z)$.
 - ▶ **Division**: L dans G_t se divise en plusieurs liens conceptuels $L'_1, L'_2, ... L'_k$ dans G_{t+1} si $\forall i, L'_i \in match(L)$.
 - ▶ Survie : L dans G_t devient L' dans G_{t+1} si $L' \in match(L)$ et $\forall Z \neq L$ dans G_t , $L' \notin match(Z)$.
 - ▶ Disparition : L dans G_t disparait si aucun des cas précédents ne survient.
 - ▶ **Apparition** : L' dans G_{t+1} apparait si $\forall L$ dans G_t , $L' \notin match(L)$.

Sommaire

- 1 Anlyser les données sociales
- 2 Clustering de liens et suivi des clusters
- Résultats expérimentaux
 - Environnement de tests
 - Exemple clusters extraits
 - Résultats
 - Outils d'extraction
- Conclusion et perspectives

Environnement de tests

Jeux de données utilisé

- Réseau de communications téléphoniques (Orange Caraïbe)
 - Noeuds : Abonnés
 - Liens : Appels téléphoniques
- Étude sur 10h : Journée du 1e Juin de 5h du matin à 15h
- Chaque noeud est caractérisé par 10 attributs
 - numéro
 - localisation (Martinique, Guadeloupe ou Guyane)
 - tranche horaire sur laquelle il est le plus actif
 - type de forfait
 - on nombre moyen d'appels passés
 - durée moyenne des appels passés
 - on nombre moyen d'appels reçus
 - durée moyenne des appels reçus
 - o nombre de sms envoyés
 - nombre de sms recus

Environnement de tests

Jeux de données utilisé

- de 6 786 noeuds à 246 253 noeuds
- de 3 799 liens à 255 947 liens

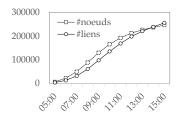


FIGURE - Évolution du nombre de liens et de noeuds sur la période

Exemple clusters extraits

Exemple de clusters extraits

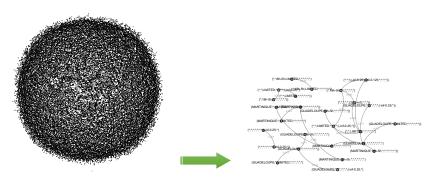


FIGURE – Extraction des liens conceptuels à 9h, avec $\beta = 0.2$

Exemple clusters extraits

Exemple de clusters extraits

Un lien conceptuel obtenu

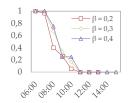
```
Support = 0,209
(*,*;18h-5h;*;*;*;*;*;*) (*,*;*;LIMITED;*;*;*;*;*;(-inf-0.25;*))
```

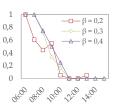
20% des appels sont passés entre des individus actifs sur la tranche 18h-5h et des individus ayant un forfait limité et envoyant peu de SMS.

Comment évoluent ces clusters?

Apparition et Disparition des clusters

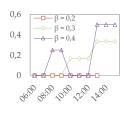
- Tests avec 3 seuils : $\beta = 0.2$, $\beta = 0.3$ et $\beta = 0.4$
- Au début : clusters très instables
 - Premières heures : apparition et disparition à l'itération suivante

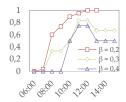


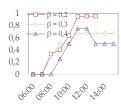


Survie, Fusion et Division des clusters

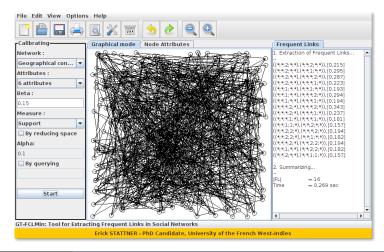
- Taux de survie relativement faible
- Bcp de fusion et de division
- Les clusters semblent se maintenir à travers la fusion et la division







Outil GT-FCLMin



Sommaire

- Anlyser les données sociales
- Clustering de liens et suivi des clusters
- Résultats expérimentaux
- 4 Conclusion et perspectives

Conclusion et perspectives

Conclusion

- Explosion des travaux sur les données sociales
- De nombreuses études sur le clustering de réseaux sociaux
 - Hypothèse de réseaux statiques
- Contributions
 - Lien conceptuels : nouvelles approches de clustering de liens
 - Suivi des clusters de liens [Stattner et Collard, 2017]

Perspectives

- Étudier l'évolution des clusters sur des intervalles plus long et non-consécutif
- Améliorer l'algorithme d'extraction

Conclusion et perspectives

Merci de votre attention!